Category Archives: peroxiredoxin

Catalase, the antioxidant heme enzyme one of three subgroups related to catalase deficiency in humans modulating the normal catalase reaction dependent on NADPH-binding catalases for function.

Catalase (CAT) is converted by decomposition and intracellular localization relationships of the main cellular antioxidant enzyme system like superoxide dismutase (SOD), peroxiredoxins (Prdx), and glutathione peroxidase (GPX) are peroxisomal matrix enzymes in the cytoplasm, translocated to the peroxisomes to catalyze hydrogen peroxide H2O2 which is decomposed to oxygen and water, locus: 11p13 (§, ). Unlike catalase, the objective of this communication, SOD which prevents the formation of Hydroxyl radicals – (HRGT) determined from constant of O2.- dismutation, and generation of reversibly inactive (CAT)-compound II, Panax ginseng could induce both transcription factors. Catalase is  composed of four identical subunits each of the subunits binds one heme-containing active site, and produces two catalase compounds HPI and HPII (PDB: 1p80) is flipped 180 degrees » with respect to the orientation of the heme related to the « root mean square to the structure of catalase, (Mutation Location) from peroxisomal catalases inactive state in compound II NADP+(H) binding pockets inverted remains similar to the structure of the wild type (Val111, PDB:1A4E, KatG) orientation on the heme proximal (PDB: 1GGK) side, inactivate catalase can be prevented by melatonin. Catalase (CAT; EC 1.11.1.6) a  free radical scavenging enzyme (FRSE) is a scavenger of H2O2. Protoporphyrin – (ZnPPIX) (PDB: 1H6N), from a heme group of the ‘heme-pathway, which forms catalase,’ is a scavenger of antioxidant (HO-1-HMOX1) heme oxygenase, involving ROS. Catalase is part of the enzymatic defense system constituting the primary defense against ROS, zinc protoporphyrin IX (ZnPPIX) is an inhibitor of (HO-1) heme oxygenase. Catalase protects the cell from oxidative damage by the accumulation of cellular reactive oxygen species (ROS) generation systems, those peroxisomal enzymes that breaks down hydrogen peroxide after H(2)O(2) exposure, and thereby mitigates* (some contradictory* results) the toxic effects of hydrogen peroxide. In the process (The typical hydroperoxidases (CAT) known as Compound I) of the substrate of catalase, NADP+ (an inactive state, compound II) is replaced by another molecule of NADP(H) to provide protection of catalase against inactivation by (H2O2) hydrogen peroxide. Erythrocyte  [Human erythrocyte catalase (HEC), The NADPH-binding sites were empty – PDB: 1F4J, 1QQW] and plasma indices (enzymatic-antioxidants) initially implies the thiobarbituric acid-reacting substances (TBARS) based on reaction with hydroxyl radicals (OH) can release thiobarbituric acid, TBAR inhibition measures malondialdehyde (MDA – impact of coenzyme Q10) correlated (with MPO-myeloperoxidase activity -generating ROS) as co-variable, by which mulberry leaf polysaccharide (MLPII) via the decomposition of (certain) MDA, products of lipid peroxidation (LPO) were reduced. Comparisons were to specific activities of catalase (SNP) single nucleotide polymorphisms (CAT-C-262 (rs1001179) the low-risk allele) of genetic variants in both, promoter a common C/T polymorphism (262-C/T), and in nineexonic – regions and its boundaries, occur frequently associated distally in genomic mutations, similar to those of normal catalase demonstrating changes in catalase protein level targeted to the peroxisomal matrix. The 262-C/T CAT low-risk allele is hypothetically related to the lower risk variant allele CAT Tyr308 G to A point mutation ineducable in the Japanese acatalasemia allele. The common C/T polymorphism can be targeted by dietary and/or pharmacological antioxidants, and the endogenous antioxidant defense enzymes concentration can prevent cellular lipid (LPO) peroxidative reactions occurring. Catalase is a homotetramer complex of 4 identical monofunctional subunits. Catalase is located at the peroxisome of human cells associated with several (PBDs)-peroxisomal biogenesis disorders commonly caused by mutations in the PEX genes, peroxisomal targeting signal 1 (PTS1) protein affecting in peroxisomal biogenesis, the monomeric to homotetrameric transition in the forms of peroxisome biogenesis disorder. PBDs also include Acatalasemia the only disease known to be caused by the (CAT) gene. In human catalase, the antioxidant heme enzyme, is localized in the cytoplasm to the peroxisome, nucleus, or linked with mitochondria which in most cells lack catalase (Peroxisomes do not contain DNA), its mitochondrial fraction (microperoxisome), a secondary phenomena shows physiological decline, aging and age-related reactions in mitochondrial function and disfunction. NADPH is required for the prevention of forming an inactive state of the enzyme. Antioxidative defence mechanisms, capacity and redox cycle enzyme activities increasing with Tc treatment Tinospora cordifolia (Tc), T and B cells and antibody. Both RBCs and plasma were measured on parameters of oxidative stress. Syzygium cumini aqueous leaves extract (ASc) was able to remove oxidant species in a hyperglycemic state generated in red blood cells RBC-CAT levels. Catalase alone is unable to prevent in a hyperglycemic state. Macrophages recruit other types of immune cells such as lymphocytes white blood cells (WBCs).  Catalase is dependent on the family of NADPH-binding catalases for function, the prevention and reversal of inactivation by its toxic substrate (H2O2) hydrogen peroxide. Amyloid-beta binds catalase and inhibits (H2O2) hydrogen peroxide, a reactive oxygen species, breakdown through efficient dismutation, and malonaldelhyde (MDA) determined in plasma, as well as another member of the oxidoreductase family, myeloperoxidase (MPO (EC 1.11.1.7)) converting H(2)O(2), the reducing equivalents produces (HOCl) hypochlorous acid a mechanism of cell-mediated antimicrobial immune defense for monofunctional catalases one of three subgroups related to catalase deficiency in humans, in micro-organisms manganese-containing catalases (‘large catalases’) determining in part the bifunctional activity of (KatG, PDB:1X7U) represented by bifunctional (heme) catalase-peroxidase based Bacterial-resistance mechanisms. Peroxiredoxins (Prxs, EC 1.11.1.21), bifunctional catalase-peroxidases (KatGs) two organelle systems are antioxidant enzymes of the peroxiredoxin family that oxidize and reduce H(2)O(2) hydrogen peroxide thereby modulating the catalase reaction, KatGs are not found in plants and animals. Trx (thioredoxin) a redox-regulating protein also controls the antioxidant enzyme activity of the main cellular antioxidant enzymes (AOE) superoxide dismutase (SOD) and catalase.
The function of NADPH bound to Catalase.
catalaseThe cytosine to thymidine transition of nucleotide-262 (-262C>T) Computer analysis indicated that the two variants bound promoter the Ile  (-262 C/T) and (B) Ile-262 in the 5′-flanking region carrying the T allele best captured and characterized the generation of the hydroxyl radical site in (PDB: 1DGB), (CAT) -[GLU] 330C>T transition, is known also as -262C>T. The ‘T allele in comparison to the C allele’ is a common C/T polymorphism frequency in the promoter region association was observed between genotypes for locus11p13 risk alleles acatalasemia mutation Asp (37C>T in exon 9) was hypothetically related to the lower risk Japanese acatalasemia allele Tyr308 a single G to A (see: rs7947841  to evaluate the link to rs769214) point mutation ineducable or near exon 9 (TC, CC, TT) of the CAT gene to which variant changes in the promoter region C/T-262 polymorphism are more closely related to CAT T/C at codon 389 in exon 9 (rs769217) polymorphism did not differ significantly from those of healthy controls in both promoter (-262 C/T) and in exonic (ASP389 C/T) regions of the catalase (CAT). catalase Tyr 370 resolves the 25 A-long (hydrogen peroxide) channel a constriction or narrowing of the channel leading to the heme cavity (‘Parameters) situated in the entrance channel to a heme protoporphyrin (ZnPPIX) (PDB: 1H6N) from a heme group, capable of heme biosynthesis‘ in a wide range of organisms convert it into into heme b, protoporphyrin IX-heme. Two channels lead close to the distal side.  A third channel reaching the heme proximal side Tyr 370, Ile-262 is proposed as a the ‘PDB: 1DGB – variant with a substituted residue in the ASP 178 to the (Met) D181E variant PDB 1p80‘.  These differences include the structure of the variant protein Val111Ala (Saccharomyces cerevisiae) related supports the existence of the ‘Heme and NADP(H) binding pockets’. The omission of a 20-residue  PDB: 1F4J, (1QQW) segment corresponds to the N-terminal (blue) of catalase from human erythrocytes (HEC), or in a C-terminal (red) domain organized with an extra flavodoxin-like fold topology may provide with weak coordination the N- or C-terminal, that allows scrutiny of the origins (topology) in this report of what would otherwise remain speculative or determined with further verification.
 Biological Xenobiotic Extracts Applications of note In the presence of Catalase:
green tea polyphenol (-)-epigallocatechin-3-gallate (EGCG)
Yamamoto T, Lewis J, Wataha J, Dickinson D, Singh B, Bollag WB, Ueta E, OsakiT, Athar M, Schuster G, Hsu S. Roles of catalase and hydrogen peroxide in greentea polyphenol-induced chemopreventive effects. J Pharmacol Exp Ther. 2004Jan;308(1):317-23. Epub 2003 Oct 20. PubMed PMID: 14569057.Furukawa A, Oikawa S, Murata M, Hiraku Y, Kawanishi S. (-)-Epigallocatechingallate causes oxidative damage to isolated and cellular DNA. Biochem Pharmacol.2003 Nov 1;66(9):1769-78. PubMed PMID: 14563487.*
Trigonella (Fenugreek)
Mohammad S, Taha A, Bamezai RN, Basir SF, Baquer NZ. Lower doses of vanadatein combination with trigonella restore altered carbohydrate metabolism andantioxidant status in alloxan-diabetic rats. Clin Chim Acta. 2004Apr;342(1-2):105-14. Erratum in: Clin Chim Acta. 2010 Aug 5;411(15-16):1158.Mohamad, Sameer [corrected to Mohammad, Sameer]. PubMed PMID: 15026271.
Aegle marmelos
Khan TH, Sultana S. Antioxidant and hepatoprotective potential of Aeglemarmelos Correa. against CCl4-induced oxidative stress and early tumor events. JEnzyme Inhib Med Chem. 2009 Apr;24(2):320-7. doi: 10.1080/14756360802167754 .PubMed PMID: 18830880.
Centella asiatica
Flora SJ, Gupta R. Beneficial effects of Centella asiatica aqueous extractagainst arsenic-induced oxidative stress and essential metal status in rats.Phytother Res. 2007 Oct;21(10):980-8. PubMed PMID: 17600859.
Daidzein
Mishra P, Kar A, Kale RK. Prevention of chemically induced mammarytumorigenesis by daidzein in pre-pubertal rats: the role of peroxidative damageand antioxidative enzymes. Mol Cell Biochem. 2009 May;325(1-2):149-57. doi:10.1007/s11010-009-0029-1. Epub 2009 Feb 13. PubMed PMID: 19214712.
Capparis
Yadav P, Sarkar S, Bhatnagar D. Action of capparis decidua againstalloxan-induced oxidative stress and diabetes in rat tissues. Pharmacol Res. 1997Sep;36(3):221-8. PubMed PMID: 9367667.
Retinal
Kannan R, Jin M, Gamulescu MA, Hinton DR. Ceramide-induced apoptosis: role ofcatalase and hepatocyte growth factor. Free Radic Biol Med. 2004 Jul15;37(2):166-75. PubMed PMID: 15203188.
Retinol
Cemek M, Caksen H, Bayiroğlu F, Cemek F, Dede S. Oxidative stress andenzymic-non-enzymic antioxidant responses in children with acute pneumonia. CellBiochem Funct. 2006 May-Jun;24(3):269-73. PubMed PMID: 16634091.
Diallyl disulfide (Allicin)
Kalayarasan S, Prabhu PN, Sriram N, Manikandan R, Arumugam M, Sudhandiran G.Diallyl sulfide enhances antioxidants and inhibits inflammation through theactivation of Nrf2 against gentamicin-induced nephrotoxicity in Wistar rats. EurJ Pharmacol. 2009 Mar 15;606(1-3):162-71. doi: 10.1016/j.ejphar.2008.12.055. Epub2009 Jan 19. PubMed PMID: 19374873.
Leucas aspera (Catechin, EGCG)
Kripa KG, Chamundeeswari D, Thanka J, Uma Maheswara Reddy C. Modulation ofinflammatory markers by the ethanolic extract of Leucas aspera in adjuvantarthritis. J Ethnopharmacol. 2011 Apr 12;134(3):1024-7. doi:10.1016/j.jep.2011.01.010. Epub 2011 Jan 18. PubMed PMID: 21251972.
Urtica dioica (nettle suppliment)Ozen T, Korkmaz H. Modulatory effect of Urtica dioica L. (Urticaceae) leaf
extract on biotransformation enzyme systems, antioxidant enzymes, lactatedehydrogenase and lipid peroxidation in mice. Phytomedicine. 2003;10(5):405-15.PubMed PMID: 12834006.
Justicia adhatoda
Singh RP, Padmavathi B, Rao AR. Modulatory influence of Adhatoda vesica(Justicia adhatoda) leaf extract on the enzymes of xenobiotic metabolism,antioxidant status and lipid peroxidation in mice. Mol Cell Biochem. 2000Oct;213(1-2):99-109. PubMed PMID: 11129964.
Phyllanthus niruri L. (Euphorbiaceae) (P. niruri)
Bhattacharjee R, Sil PC. Protein isolate from the herb, Phyllanthus niruri L.(Euphorbiaceae), plays hepatoprotective role against carbon tetrachloride inducedliver damage via its antioxidant properties. Food Chem Toxicol. 2007May;45(5):817-26. Epub 2006 Nov 11. PubMed PMID: 17175085.
Tinospora cordifolia
Sharma V, Pandey D. Protective Role of Tinospora cordifolia againstLead-induced Hepatotoxicity. Toxicol Int. 2010 Jan;17(1):12-7. doi:10.4103/0971-6580.68343. PubMed PMID: 21042467; PubMed Central PMCID: PMC2964743.
Aher V, Kumar Wahi A. Biotechnological Approach to Evaluate theImmunomodulatory Activity of Ethanolic Extract of Tinospora cordifolia Stem(Mango Plant Climber). Iran J Pharm Res. 2012 Summer;11(3):863-72. PubMed PMID:24250513; PubMed Central PMCID: PMC3813135.
coenzyme Q10
Lee BJ, Lin YC, Huang YC, Ko YW, Hsia S, Lin PT. The relationship betweencoenzyme Q10, oxidative stress, and antioxidant enzymes activities and coronaryartery disease. ScientificWorldJournal. 2012;2012:792756. doi:10.1100/2012/792756. Epub 2012 May 3. PubMed PMID: 22645453; PubMed CentralPMCID: PMC3356738.
Dietary carotenoid-rich pequi oil
Miranda-Vilela AL, Akimoto AK, Alves PC, Pereira LC, Gonçalves CA,Klautau-Guimarães MN, Grisolia CK. Dietary carotenoid-rich pequi oil reducesplasma lipid peroxidation and DNA damage in runners and evidence for anassociation with MnSOD genetic variant -Val9Ala. Genet Mol Res. 2009 Dec15;8(4):1481-95. doi: 10.4238/vol8-4gmr684. PubMed PMID: 20082261.
Tinospora cordifolia  (Mango Plant Climber) extract from Tinospora known as Tinofend Aher V, Kumar Wahi A. Biotechnological Approach to Evaluate theImmunomodulatory Activity of Ethanolic Extract of Tinospora cordifolia Stem(Mango Plant Climber). Iran J Pharm Res. 2012 Summer;11(3):863-72. PubMed PMID:24250513; PubMed Central PMCID: PMC3813135.
 mulberry leaf polysaccharide (MLPII)
Ren C, Zhang Y, Cui W, Lu G, Wang Y, Gao H, Huang L, Mu Z. A polysaccharideextract of mulberry leaf ameliorates hepatic glucose metabolism and insulinsignaling in rats with type 2 diabetes induced by high fat-diet andstreptozotocin. Int J Biol Macromol. 2014 Oct 11. pii: S0141-8130(14)00674-6.doi: 10.1016/j.ijbiomac.2014.09.060. [Epub ahead of print] PubMed PMID: 25316427.
five widely studied medicinal plants (Protandim)
Nelson SK, Bose SK, Grunwald GK, Myhill P, McCord JM. The induction of humansuperoxide dismutase and catalase in vivo: a fundamentally new approach toantioxidant therapy. Free Radic Biol Med. 2006 Jan 15;40(2):341-7. PubMed PMID:16413416.
melatonin
Mayo JC, Tan DX, Sainz RM, Lopez-Burillo S, Reiter RJ. Oxidative damage tocatalase induced by peroxyl radicals: functional protection by melatonin andother antioxidants. Free Radic Res. 2003 May;37(5):543-53. PubMed PMID: 12797476.
Protective effect of harmaline
Kim DH, Jang YY, Han ES, Lee CS. Protective effect of harmaline and harmalolagainst dopamine- and 6-hydroxydopamine-induced oxidative damage of brainmitochondria and synaptosomes, and viability loss of PC12 cells. Eur J Neurosci.2001 May;13(10):1861-72. PubMed PMID: 11403679.
horseradish peroxidase (HRP)
Shen L, Hu N. Heme protein films with polyamidoamine dendrimer: directelectrochemistry and electrocatalysis. Biochim Biophys Acta. 2004 Jan30;1608(1):23-33. PubMed PMID: 14741582.
Selegiline (–)Deprenyl
Kitani K, Minami C, Isobe K, Maehara K, Kanai S, Ivy GO, Carrillo MC. Why(–)deprenyl prolongs survivals of experimental animals: increase of anti-oxidantenzymes in brain and other body tissues as well as mobilization of varioushumoral factors may lead to systemic anti-aging effects. Mech Ageing Dev. 2002Apr 30;123(8):1087-100. Review. PubMed PMID: 12044958.
Rhodiola rosea
Bayliak MM, Lushchak VI. The golden root, Rhodiola rosea, prolongs lifespanbut decreases oxidative stress resistance in yeast Saccharomyces cerevisiae.Phytomedicine. 2011 Nov 15;18(14):1262-8. doi: 10.1016/j.phymed.2011.06.010. Epub2011 Jul 30. PubMed PMID: 21802922.
Carnitine
Kiziltunc A, Coğalgil S, Cerrahoğlu L. Carnitine and antioxidants levels inpatients with rheumatoid arthritis. Scand J Rheumatol. 1998;27(6):441-5. PubMedPMID: 9855215.
 Syzygium cumini
 De Bona KS, Bellé LP, Sari MH, Thomé G, Schetinger MR, Morsch VM, Boligon A,
Athayde ML, Pigatto AS, Moretto MB. Syzygium cumini extract decrease adenosine
deaminase, 5’nucleotidase activities and oxidative damage in platelets of
diabetic patients. Cell Physiol Biochem. 2010;26(4-5):729-38. doi:
10.1159/000322340. Epub 2010 Oct 29. PubMed PMID: 21063110.

Characterization of human thioredoxin system and the potential cellular responses encoded to observe the Thioredoxin-Trx1 reversibly regulated redox sites.

Thioredoxin: human TXN, is a oxidoreductase enzyme in the status of a 12 kDa cellular redox-reductase reaction (70-kDa in bacteria, fungi and plants), a cellular defense mechanisms against oxidative stress of the cell, and numerous cytosolic processes in all cells. Txn1 is a pleiotropic cellular causative gene factor which has numerous functions. Chromosome 3p12-p11 shares homology with human thioredoxin gene Trx1, Trx80: 9q31.3; (§, ). Here the following reaction is the possible mechanisms of the thioredoxin-catalyzed reduction and re-oxidation of its characteristic cystine residues.

 The TXN gene, consists of the first of 5 exons  separated by 4 introns and is located 22 bp downstream from the only known basal TATA box factor TBP-2/TXNIP vitamin D(3) up-regulated protein 1-VDUP1, negatively regulating TRX function, and exhibiting cellular growth and suppressive (cancer) activity.

 TRX inhibited Apoptosis signal-regulating kinase-ASK1 kinase (MAP3K5), activity, dependent on two cysteine residues in the N-terminal domain of ASK1 on the redox (regulation) forming intramolecular disulfide between the status of TXN. Two cysteine residues (N-terminal C32S or Trx C-terminal C35S and/or a Trx-CS double mutation) remaining trapped with the Ask1 as a inactive high-molecular-mass complex, blocking its reduction to release Trx from ASK1 depends on intramolecular disulfide to catalyze the reduction of the redox regulation of TRX. Trx and a thiol-specific antioxidant thioredoxin peroxidase-2 orthologue (Tpx) in various* biological phenomena is involved in redox regulation (NADPH-the thioredoxin system) of the dithioldisulfide active site.

 An apoptosis signal transduction pathway through stimulus-coupled S-nitrosation of cysteine, has two critical (almost identical) cysteine residues in the Trx redox-active center. Where a disulfide exchange reaction between oxidized Txnip [thioredoxin-interacting protein; mouse Vdup1] and reduced TXN occurs. Txnip (-when used to investigate cardiac hypertrophy) is a regulator of biomechanical signaling. Hydrogen peroxide downregulated expression is the only known function associated with an incomplete TRX response through stimulus-coupled S-nitrosation of cysteine residues. Peroxiredoxin PrxIII-‘Tpx1 serves as’ a tandem (dimer) thioredoxin (Trx2) and NADP-linked thioredoxin reductase (TRR2-TxnR1), are Trx mechanisms of the two electron donor system.

 Cytosolic caspase-3 was maintained by S-nitrosation, consistent with cytosolic and mitochondria, Trx-1 contain equivalent Trx systems, which enabled identification of caspase-3 substrates where TXN may regulate S-nitrosation with the redox center of TXN specific (C73S) to Nitric oxide-NO cellular signal transduction associated with  inhibition of apoptosis or mutant Trx neurotoxicity. EGCG° (epigallocatechin-3-gallate) may be useful in cell survival on caspase-(3_dependent)-neuronal apoptosis where a membrane reaction, a reduced hormesis consequently triggers the apoptosis effect and direct or indirectly numerous protein-protein interactions and basal cofactor substrates which occur between caspase-3 and Trx. The effect of  exercise training via activation of caspase-3 has a decrease in superoxide, and increase of Trx-1 levels in brain. Protection from mechanical stress identified, NSF- N-ethylmaleimide transduced into a TRX peroxidase response via mechanical force of a typical transnitrosylated  Casp3, attenuated  Trx1 2-cysteines which directly transnitrosylates Peroxiredoxins. C32S ( redox potential) was identified as thiol-reducing system, which lacks reducing activitiy (nonactive C69S and Cys(73) both monomeric) or a reversible regulating function in the presence of caspase 3 activity is a process found in the presence of NADP and TrxR.

 There are at least two thioredoxin reductive or oxidative** (reductases / peroxiredoxin) regulated systems. The mutant 32CXXC35′ motif of thioredoxin nitrosation sites, where two cysteines are separated by two other amino acids, and codes for an additional three cysteines where the Cys 62/C73S (not monomers) sidechain the active site of Cys 62 also can form several disulphides and be modified by the carbon-bonded sulfhydryl, where the  thiol reducing system, was evident.

 Intracellular TRX/ADF (Adult T cell leukemia-derived factor HTLV-I) can regulate cell nuclei, protein-nucleic acid interactions. Transnitrosylation and denitrosylation is a reversible Post-translational (PTM) altered by redox modification of different cysteine residues (C3273S) in Trx1, S-nitrosation or its interactions with other proteins and DNA-dependent nuclear processes. NFKappaB REF-1 redox factor 1  involving Cys62, in the two complexes, are correlated as N ⇔ C-terminal responses with  TRX-1 nuclear migration through the reduction of a pleiotropic cellular factor. TRX redox activities of protein-protein cysteine residues is identical to a DNA repair enzyme through various cytoplasmic aspects mediating cellular responses in the ‘nucleus‘. The DNA binding activity and transactivation of ‘AP-1‘ activator proteins (JUNproto* oncogen) depends on the reduction between the sulfhydryl of cysteines to keep Trx1 reduced, is demonstrated in cells. Selenium-dependent seleneocysteine based peroxidase reductants, reduce Lipoic acid stereoselectively under the same TRX rather than GSH-PX1-glutathione peroxidase oxidative stress conditions. Senseantisense (TRX) antiapoptoitic interactions nitrosylated at Cys73 are attenuated and integrated into the host cell under oxidative conditions, in which thioredoxin (TRX), and a cellular TRX reducing catalyst agent (DTT-redox reagent) to S-nitrosoglutathione (GSNO) intermediate via cysteine residues ‘influences’-catalyst mediated (post-translational modifications) PTMs; and possibly 1,25D(3)-Calcitriol; NADPH:oxygen oxidoreductases correlated with  (Trx-1) a protein disulfide oxidoreductase.

 Peroxynitrite** converts superoxide to hydrogen peroxide (H2O2)-induced Trx degradation, in concentrations that detoxify reactive oxygen species (ROS), demonstrated by superoxide dismutases (SOD)-catalyse and peroxidases, converting superoxide to hydrogen peroxide which is decomposed to water plus oxidized thioredoxin to maintain the anti-apoptotic (C62) function of thioredoxins additional five sulfhydryl group thiols in the fully reduced state, in a Trx-dependent manner. Reactive oxygen species (ROS) can cause DNA damage, and uncontrolled cellular proliferation or apoptotic death of cancer cells.The NADPH (Trx system) oxidizing substrate-dependent reduction of Thioredoxin reductase-TrxR has a reversibly modulated role in restoration of GR (glucocorticoid receptor) function, and DNA binding domain.

(Click on image to Zoom)

NADP  1XOB Secreted Trx may participate in removing inhibitors of collagen-degrading metalloproteinases. PMID: 14503974 the molecular mechanisms underlying functional the TR1-Trx1 redox pair and structure determination of an active site of the ligand mini-stromelysin-1 TR-1 augmentation composed of TR (Trx reductase activities) the main function of TR1 here is to reduce Trx1 also validated as a ligand PMID; 23105116, have been characterized between ligand bound and free structures PMID; 20661909, for specific isolation of  C35S selenocysteine (SeCys)-containing protein shows the best docking position found, consists of one strand at position [PROline]76:A.side chain: from the four-stranded antiparallel beta sheet was with wild-type TrxA C32-35S located in the Thioredoxin_fold (PDB accession code 1XOB: PMID: 15987909) , TR1 as a single hybrid PDB (Cys32 and Cys35 for Trx1, and for TR1) pubmed/20536427 investigate the possible mechanism. {{{During this reduction, the thiol-disulfide oxidoreductase thioredoxin-1 (Trx1) linked thioredoxin reductase (TRR2) a working model suggesting that deregulation of the thioredoxin reductase TXNRD1 and|}}} its characteristic substrate thioredoxin (TR [1]), concomitant with diminution of their Trx reductase cellular contents is highly related to glutamate excitotoxicity PMID: 20620191; TR1: hStromelysin-1

enlargeNADPAn ET (electron transfer) mechanism from NADPH and another  enzyme thioredoxin reductase pubmed/17369362 the charged residue aspartate D60 (Fig.2) pubmed/9369469/ plays a role in the degradation of proteins and in apoptotic processes induced by oxidative stress  PMID: 16263712  to determine the effect of  zerumbone ZSD1 Zerumbone-loaded nanostructured lipid carriers Int J        Nanomedicine. 2013;8:2769-81. doi: 10.2147/IJN.S45313. Epub 2013        Aug 2 PMID:23946649 [PubMed - indexed for MEDLINE]        PMCID:PMC3739459 (from shampoo ginger; Name: Alpha-humulene) on NADP-malate dehydrogenase, TRX dependent oxidoreductase, that NADPH does not contain. Monomeric Thioredoxin is present across phyla from humans to plants PMID: 20661909, 11012661 mediated in vivo by thioredoxin-catalyzed reduction and re-oxidation of cystine residues PubMed id: 10196131 (Fig.3-PDB: 1CIV, NADP). Trx is able to activate vegetal NADP-malate dehydrogenase PMID: 3170595 (excluding the initial methionine) Met is located at the N-terminal – PMID: 11807942, 2684271. A relatively rigid local configuration for the aspartate residue D60 is found but which implies that the (NADP-TrxR) protein fluctuates among the numerous protein models and mutations over the time scales fluctuations.

Continue reading